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Abstract

A composite clock created from a local clock ensemble is known by its time offsets from the
ensemble clocks. By a geometrical argument, estimates for the instability of the composite clock
are calculated from the instabilities of the ensemble clocks, individually and against the composite
clock. The method is illustrated by examples using simulated and real ensembles.

1 INTRODUCTION

Suppose that we have a local ensemble of uncorrelated clocks A1, ..., An, called the base clocks.
Their instabilities are assumed to be known, where instability is defined by any of the deviations
(Allan, modified Allan, Hadamard) customarily used for clocks. In addition, there is another clock
X whose offset from each Ai is known as a function of time. In particular, X could be a composite
clock that is formed from some timescale algorithm operating on measurements of the differences
Ai−Aj of the base clocks; the measurement errors are assumed to be negligible. Having estimated
the instabilities of the base clocks Ai and of the offsets X − Ai, how much can we find out about
the instability of X itself? There has to be some information about it, but is it good enough to be
useful?

By a geometrical argument, we will show how to compute the range of possible instabilities of X
without using any outside comparisons and without knowing anything about the algorithm that
produces X. For one or two clocks, the geometry can be shown by a simple diagram; for any number
of clocks, the argument is carried out by algebra, and the results are given by simple formulas. There
is a minimum instability, a maximum instability, and an intermediate “mid” estimate.

After developing the formulas we show three examples, two from simulations and one from real
clocks, and discuss the limitations of the method that are inherent in our imperfect knowledge of
the required data.

1This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
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2 A GEOMETRICAL ARGUMENT

Any RMS instability measure, for a single averaging time, can be regarded as a norm generated
by an inner product on a vector space of random phase residuals. To be specific, consider Allan
deviation σy (τ), where τ is fixed in this discussion. If A and B are two clocks with phase deviations
xA (t) and xB (t), define the inner product

〈A,B〉τ =
1

2τ2
E

[
∆2

τxA (t)
] [

∆2
τxB (t)

]
, (1)

where it is assumed that the expectation does not depend on t. Then σy (τ) for clock A is the norm
‖A‖τ generated by this inner product:

σy (τ) = ‖A‖τ =
√
〈A,A〉τ . (2)

Each τ determines a different norm2, or metric. The instability of A and B relative to each other is
‖A−B‖τ , the distance between the two points in this metric space. The clocks are orthogonal in
this inner product, 〈A,B〉τ = 0, if the clocks are uncorrelated and

[
E∆2

τxA (t)
] [

E∆2
τxB (t)

]
= 0.

We may now use the algebraic machinery of inner product spaces to find our way about. Because we
are dealing with a finite number of “vectors,”this algebra is the same as the algebra of Euclidean
spaces and can be interpreted geometrically. In the following arguments, the base subspace is
defined as the space of linear combinations of the base clocks, which are assumed to be orthogonal.
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Figure 1: One base clock.

2.1 One Base Clock

We can begin with just one base clock A and the other clock X. Let a = ‖A‖τ , x = ‖X‖τ ,
d = ‖X −A‖τ . We know a and d, and we want to estimate x. In Figure 1, the point X is
somewhere on a circle with radius d and center at a on the baseline, and x is the length of OX.
The maximum and minimum of x are a + d and |a− d| (whether or not a ≥ d). The intermediate

2Strictly speaking, this is a seminorm because ‖A‖ = 0 if the clock has constant frequency. Or we can identify
clocks that differ only by a constant frequency.
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estimate of x comes from the assumption that clock X equals clock A plus a vector orthogonal to
A. Thus, for one base clock we express the results as

xmax = a + d, xmin = |a− d| , xmid =
√

a2 + d2. (3)

2.2 Two Base Clocks

For two base clocks, three dimensions are needed. Figure 2 shows the geometry without the third
dimension. The orthogonal base clocks A1 and A2 have norms a1 and a2. We also know the
distances d1 and d2 of X from A1 and A2. The possible values of x = ‖X‖τ are realized by rotating
X out of the plane about the axis A1A2, keeping the distances d1 and d2 fixed. The picture shows
xmin and xmax, which are the values of x when X is in the plane, that is, in the base subspace. (In
the picture, X is at the max position.) When X is directly above a point on A1A2, then X is as
far from the plane as it can be, and X is a weighted average of the base clocks plus a vector X⊥
orthogonal to the base subspace. We define xmid to be the length of this X. (In an extreme case,
one of the two weights can be negative, though their sum is 1.) The author feels intuitively that this
solution has special value for estimating the norm of a composite clock, simply because timescale
algorithms express the increment of the composite clock as a weighted average of the increments of
the detrended base clocks. The author has no further argument to support this intuition, however.
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Figure 2: Two base clocks. The point X is rotated out of the plane.

2.3 Any Number of Base Clocks

For n base clocks the argument can be carried out algebraically. The clocks Ai are assumed to be
orthogonal. Given ai = ‖Ai‖τ > 0 and di = ‖X −Ai‖τ for all i, we wish to estimate x = ‖X‖τ .
We can represent X by the orthogonal expansion

X =

(
n∑

i=1

xi
Ai

ai

)
+ X⊥, (4)

where

xi =
〈X,Ai〉τ

ai
, (5)
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and X⊥ is a vector that is orthogonal to the base subspace. Let x⊥ = ‖X⊥‖τ . Then

x2 =

(
n∑

i=1

x2
i

)
+ x2

⊥. (6)

Now
d2

i = ‖X −Ai‖2
τ = x2 − 2 〈X, Ai〉τ + a2

i = x2 − 2aixi + a2
i ,

2xi =
x2 + a2

i − d2
i

ai
. (7)

Square both sides of (7) and sum over i. By (6),

4
(
x2 − x2

⊥
)

=
n∑

i=1

(
x2 + a2

i − d2
i

)2

a2
i

.

Expand the terms in this sum and collect powers of x. Setting

εi = 1− d2
i

a2
i

(8)

we get
x4∑a−2

i − 2x2 (2−∑
εi) +

∑
a2

i ε
2
i + 4x2

⊥ = 0.

To simplify this equation further, set

y = x2∑a−2
i , (9)

y⊥ = x2
⊥
∑

a−2
i . (10)

Then
y2 − 2By + C + 4y⊥ = 0, (11)

where

B = 2−∑
εi, (12)

C =
(∑

a−2
i

) (∑
a2

i ε
2
i

)
. (13)

The solutions of (11) are
y = B ±

√
B2 − C − 4y⊥, (14)

with corresponding solutions for x according to (9).

A necessary and sufficient condition for meaningful solutions to exist is

B ≥
√

C. (15)
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If (15) holds and 0 ≤ y⊥ ≤ 1
4

(
B2 − C

)
, then there are nonnegative y solutions corresponding to

the points X that are the same distance x⊥ above and below the base subspace. When y⊥ = 0 we
have the extremal solutions

ymax = B +
√

B2 − C, ymin = B −
√

B2 − C, (16)

for which X is in the base subspace. When y⊥ takes its maximum value 1
4

(
B2 − C

)
, we have the

intermediate estimate
ymid = B. (17)

For this special solution,
∑xi

ai
= 1. In fact, if y = B then x2 = B/

∑
a−2

j . By (7) and (8),

xi

ai
=

B

2a2
i

∑
a−2

j

+
εi

2
,

and
∑xi

ai
= 1 follows from (12). Then (4) says that X is a weighted average of the Ai plus a vector

orthogonal to the base subspace. (Again, some of the weights can be negative.)

If B <
√

C there are no meaningful solutions: there is no point X at the given distances di from
orthogonal vectors Ai having given lengths ai. In Figure 2, the two pivoting rods fastened to A1

and A2 are too short or too mismatched for their free ends to meet at a common point X.

The reader is reminded that this calculation has to be carried out anew for each averaging time τ .

3 EXAMPLES

The first example (Figure 3) is from an eight-clock simulation [1]. The duration of the simulated
run is 1.44 × 108 s. The clocks are all simulated with white FM plus random walk FM. The odd-
numbered clocks are statistically identical to clock 1, the even-numbered clocks to clock 2. The
dotted curves show the measured Allan deviation (Adev) of clocks 1 and 2. The black curve with
the asterisks is the measured Adev of the actual composite clock (CC) phase, which was produced
with a modified Kalman filter algorithm. Not shown are the Adevs of the base clocks against the
CC, di in the previous section. The blue curves with the plus signs, labeled “True,”show the min,
mid, and max CC estimates using the measured Adev of the true simulated clocks for ai. These
curves end when the condition (15) is violated. Because stability measurements of the individual
base clocks would not be directly available in reality, Barnes’s n-cornered-hat formulas [2,3] were
also used to generate values for ai from the measured Adevs of all base clock pairs. The resulting
CC estimates are shown by the green curves with the open circles, labeled “NCH.” These curves
end when some of the variance estimates from the n-cornered hat are negative. The NCH mid
and max estimates agree well with the True estimates where they both exist. The mid estimate is
at most 1.25 times the actual CC Adev; the max estimates are less than 1.8 times the actual CC
Adev. The min estimates are too low and variable to be useful.

The second example (Figure 4) is from a four-clock simulation [4], in which the CC phase was
also generated by a modified Kalman algorithm. The simulated duration is 106 s. The ratio of mid
estimate to actual CC Adev is between 0.95 and 1.12.
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Figure 3: An eight-clock simulation
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Figure 4: A four-clock simulation
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The third example (Figure 5) uses actual data from a comparison of three hydrogen masers at the
National Physical Laboratory between MJD 53005 and MJD 53160 [5]. To eliminate the effect of
linear frequency drift, Hadamard deviation (Hdev) is used for the instability measure. The dotted
curves are the three-cornered hat Hdev estimates of the base clocks. The CC phase (relative to
the base clocks) is generated by a novel Kalman algorithm, in which the frequency state of each
clock is represented as the sum of independent stationary Markov processes. Here we do not know
the actual CC Hdev, but the black curve shows a theoretical computation of its Hdev, obtained
from an auxiliary Kalman filter calculation [5]. The mid estimate agrees remarkably well with the
theoretical CC Hdev. Furthermore, the min and max estimates are relatively tight. Geometrically,
the point X has to stay close to the plane of weighted averages of the three clocks. For two clocks
(Figure 2), X would be close to the line A1A2; this would happen if d1 + d2 were only slightly
greater than

√
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Figure 5: An ensemble of three hydrogen masers.

4 DISCUSSION

We have shown a method for calculating estimates for the instability of a composite clock from
knowledge of the instability of the base clocks and of their offsets from the composite clock. Like
the n-cornered hat, this method needs a long data interval for a given averaging time to give useful
results. The theory behind the calculation assumes that we know the exact expected values of the
required instabilities, and that the base clocks are uncorrelated stochastic processes. Of course, the
values have to be estimated from finite data; moreover, the base clock instabilities ai themselves
often come from an n-cornered hat calculation. The base clocks may also be physically correlated.
(In any case, their finite samples almost always have nonzero correlations.) Nevertheless, in the
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examples that were tried, the method gives practical max and mid estimates whenever they can be
calculated at all.

The author’s experience with this method is limited to a few examples in which the composite clock
was generated by a modified Kalman algorithm. Users of other timescale algorithms should try the
method on simulated data before trusting it to give useful results for real clocks.
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Questions and Answers

DEMETRIOS MATSAKIS (U.S. Naval Observatory): Brown wrote a paper which I believe
was published in 1981 in the Institute of Navigation, and he did the Composite Clock of GPS as his
example; it was Kalman-based. I am sure he came up with a formula, and I believe it was something
as simple as a weight squared times the Allan bariance equals a composite Allan variance. Have
you compared your results to whatever he had in there?

CHUCK GREENHALL: I think that was for a special example where all the clocks had the
same phase spectrum except at different levels, if I remember correctly.

MARC WEISS (National Institute of Standards and Technology): I have always thought
that the case for a clock independence results in – well, if the algorithm is optimal, you get the
resistance-in-parallel law; that is, one over the variance of the composite clock should be equal to
one over the variance of the clocks. And I guess you can throw the weight over the variance of
the clock. Maybe it is times, but something like that. Is that what you have done here? Is that
consistent with that idea?

GREENHALL: I have had a little time to think now. This method doesn’t even know what kind
of algorithm is used for the Composite Clock. So I think just using the method you say would be
sort of equivalent to saying that the Composite Clock is close to the origin as you can get – on this
line here.

Yes, you see, and in other words d1 plus d2 would be equal the length of this line. I think that is
what would happen. But I am just guessing, you know.
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